Moduli spaces and motivic distribution of rational curves

Object of interest

\rightarrow Given $\pi: \mathscr{V} \rightarrow \mathscr{C}$ proper flat morphism above a smooth projective curve \mathscr{C} over a field k whose generic fibre V is a smooth "Fano-like" variety \leadsto Sections $\sigma: \mathscr{C} \rightarrow \mathscr{V}$ of given numerical class δ generically intersecting a given dense open subset U are parameterised by a quasi-proj. scheme

$$
\operatorname{Hom}_{\mathscr{C}}^{\delta}(\mathscr{C}, \mathscr{V})_{U}
$$

$$
k(\mathscr{C}) \text {-points of } V \stackrel{1: 1}{\longleftrightarrow} \text { sections } \sigma: \mathscr{C} \rightarrow \mathscr{V}
$$

Questions
\triangle dimension, number of components
\triangleright if $k=\mathbf{F}_{q}$ - number of \mathbf{F}_{q}-points (asymptotic formula) $>$ cohomology / motive

Ring(s) of motivic integration

Grothendieck ring of k-varieties:

$$
K_{0} \mathbf{V a r}_{k}=\frac{\mathbf{Z}\{\text { iso. classes of alg. } k \text {-var. }\}}{\langle[X]-[U]-[X \backslash U] \mid U \underset{\text { open }}{\subset} X\rangle}
$$

with product law $[X] \cdot[Y]=\left[X \times_{k} Y\right]$
Ring of motivic integration:

$$
\mathscr{M}_{k}=K_{0} \operatorname{Var}_{k}\left[\mathbf{L}_{k}^{-1}\right]
$$

where $\mathbf{L}_{k}=\left[\mathbf{A}_{k}^{1}\right]$
> if $k=\mathbf{F}_{q}$ - counting measure $[X] \mapsto \# X\left(\mathbf{F}_{q}\right)$

Reduction conditions on curves

Given $\mathscr{S} \underset{\text { closed }}{\hookrightarrow} \mathscr{C}$ and $W \underset{\text { loc. closed }}{\hookrightarrow} \operatorname{Hom}_{\mathscr{C}}(\mathscr{S}, \mathscr{V})$

$$
\operatorname{Hom}_{\mathscr{C}}^{\delta}(\mathscr{C}, \mathscr{V} \mid W)_{U}=\left\{\sigma \mid \sigma_{\mid \mathscr{S}} \in W\right\}
$$

References.
[BB23] Margaret Bilu and Tim Browning, A motivic circle method, preprint, arXiv:2304.09645 (2023)
[BM90] Victor V. Batyrev and Yuri I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques, Mathematische Annalen 286 (1990), no. 1-3, 27-43.
[Fai23a] Lois Faisant, Motivic distribution of rational curves and twisted products of toric varieties, preprint, arXiv:2302.07339 (2023)
[Fai23b] , Stabilisation phenomena in moduli spaces of curves, PhD thesis, Université Grenoble Alpes, 2023.
[Pey95] Emmanuel Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Mathematical Journal 79 (1995), no. 1, 101-218.

Dictionary of global and local fields

| \mathbf{Q} | $\mathbf{F}_{q}(t)$ | $\mathbf{C}(t)$
 or Number field K |
| :---: | :---: | :---: | | or Function field |
| :---: |
| of a \mathbf{F}_{q}-curve | | or Function field |
| :---: |
| of a complex curve |

Motivic equidistribution of curves

$>$ Inspired by the Batyrev-Manin-Peyre principle [BM90, Pey95]

$$
\#\left\{\mathbf{x} \in U(\mathbf{Q}) \mid H_{\omega_{V}^{-1}}(\mathbf{x}) \leqslant B\right\} \underset{B \rightarrow \infty}{\sim} C B \log (B)^{\mathrm{rk}(\operatorname{Pic}(V))-1}
$$ one asks whether

$$
\left[\operatorname{Hom}_{\mathscr{C}}^{\delta}(\mathscr{C}, \mathscr{V} \mid W)_{U}\right] \mathbf{L}_{k}^{-\delta \cdot \omega_{V}^{-1}} \underset{" \delta \rightarrow \infty "}{\longrightarrow} \tau(\mathscr{V} \mid W)
$$

in a suitable completion of \mathscr{M}_{k}.
The expected limit $\tau(\mathscr{V} \mid W)$ is given by $\mathbf{L}_{k}^{\operatorname{dim}(V)(1-g(\mathscr{C}))}$ times the motivic Euler product:

$$
\frac{\left[\operatorname{Pic}^{0}(\mathscr{C})\right]^{\mathrm{rk}(\operatorname{Pic}(V))}}{\left(\mathbf{L}_{k}^{g(\mathscr{C})}\left(1-\mathbf{L}_{k}^{-1}\right)\right)^{\operatorname{rk}(\operatorname{Pic}(V))}} \prod_{p \in \mathscr{C}}\left(1-\mathbf{L}_{\kappa(p)}^{-1}\right)^{\operatorname{rk}(\operatorname{Pic}(V))} \int_{W_{p}} \omega_{p}
$$

where ω_{p} a certain local motivic measure [Fai23a].

Tangency conditions at every point

Campana-type condition: if σ locally intersects an effective divisor \mathscr{D}, then it does it with multiplicity $\geqslant m$. For example, on the picture below we took $m=2$.

Equivariant compactifications

Theorem [Fai23a]. Rational curves equidistribute on toric varieties.

- A similar result holds for sections with Campana conditions on equivariant compactifications of vector groups [Fai23b].

Questions

- New examples?
$>$ Reformulation in log-geometry? vs. root-stacks and orbifolds?
$>$ Going back to classical countings when $k=\mathbf{F}_{q}$?

Techniques

- Universal torsors for Mori Dream Spaces
- Motivic harmonic analysis, circle method [BB23], ...
- ...other ones to be developed!

